Detailed Leak Localization in Water Distribution Networks Using Random Forest Classifier and Pipe Segmentation

نویسندگان

چکیده

In this paper, a Random Forest classifier was used to predict leak locations for two differently sized water distribution networks based on pressure sensor measurements. The prediction model is trained simulated scenarios with randomly chosen parameters - location, size, and base node demand uncertainty. Leak localization methods found in literature that rely numerical simulations can only network nodes as nodes; however, since occur at any point along pipe segment, additional spatial discretization of suspect proposed paper. It observed segmentation the whole non-feasible approach it rapidly increases number potential locations, consequently increasing complexity model. Therefore, novel proposed, which leaks occurring original only, but its accuracy assessed against measurements from points between nodes. successfully narrow down area and, followed by subsequent prediction, precise be achieved. enables incorporation various uncertainties simulating under different conditions. Investigation size uncertainty variation showed several produce similar makes difficult unambiguously determine location using future approaches coupling modeling optimization are proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor placement for classifier-based leak localization in water distribution networks using hybrid feature selection

This chapter presents a sensor placement method for the classifier-based approaches for leak localization in water distribution networks introduced in the previous chapter. The proposed approach formulates the sensor placement problem as a binary optimization problem. Because of the complexity of the resulting optimization problem, it is solved by means of Genetic Algorithms. In order to reduce...

متن کامل

Leak Localization in Drinking Water Distribution Networks using Structured Residuals

1 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg, e-mail: [email protected] 2 Advanced Control Systems (SAC), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 5, 08028 Barcelona, Spain, e-mail: [email protected] 3 Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, 64849 México, e-mail: mv.casillas.phd.mty@ites...

متن کامل

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Segmentation of retinal OCT images using a random forest classifier

Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of retinal abnormalities. Both retinal morphology and layer thickness can provide important information to aid in the differential diagnosis of these abnormalities. Automatic segmentation methods are essential to providing these thickness measurements since the manual delineation of each layer is cumbersome...

متن کامل

Leak Localization in Water Distribution Networks using Pressure Models and Classifiers

This chapter proposes a leak localization architecture and an associated methodology in Water Distribution Networks (WDNs) using pressure models and classifiers. In a first stage of the proposed architecture, residuals are obtained by comparing available pressure measurements with the estimations provided by a WDN model. In a second stage, a classifier is applied to the residuals with the aim o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3129703